Role of intrinsic conductances underlying responses to transients in octopus cells of the cochlear nucleus.

نویسندگان

  • N L Golding
  • M J Ferragamo
  • D Oertel
چکیده

Recognition of acoustic patterns in natural sounds depends on the transmission of temporal information. Octopus cells of the mammalian ventral cochlear nucleus form a pathway that encodes the timing of firing of groups of auditory nerve fibers with exceptional precision. Whole-cell patch recordings from octopus cells were used to examine how the brevity and precision of firing are shaped by intrinsic conductances. Octopus cells responded to steps of current with small, rapid voltage changes. Input resistances and membrane time constants averaged 2.4 MOmega and 210 microseconds, respectively (n = 15). As a result of the low input resistances of octopus cells, action potential initiation required currents of at least 2 nA for their generation and never occurred repetitively. Backpropagated action potentials recorded at the soma were small (10-30 mV), brief (0.24-0.54 msec), and tetrodotoxin-sensitive. The low input resistance arose in part from an inwardly rectifying mixed cationic conductance blocked by cesium and potassium conductances blocked by 4-aminopyridine (4-AP). Conductances blocked by 4-AP also contributed to the repolarization of the action potentials and suppressed the generation of calcium spikes. In the face of the high membrane conductance of octopus cells, sodium and calcium conductances amplified depolarizations produced by intracellular current injection over a time course similar to that of EPSPs. We suggest that this transient amplification works in concert with the shunting influence of potassium and mixed cationic conductances to enhance the encoding of the onset of synchronous auditory nerve fiber activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature affects voltage-sensitive conductances differentially in octopus cells of the mammalian cochlear nucleus.

Temperature is an important physiological variable the influence of which on macroscopic electrophysiological measurements in slices is not well documented. We show that each of three voltage-sensitive conductances of octopus cells of the mammalian ventral cochlear nucleus (VCN) is affected differently by changes in temperature. As expected, the kinetics of the currents were faster at higher th...

متن کامل

Potassium currents in octopus cells of the mammalian cochlear nucleus.

Octopus cells in the posteroventral cochlear nucleus (PVCN) of mammals are biophysically specialized to detect coincident firing in the population of auditory nerve fibers that provide their synaptic input and to convey its occurrence with temporal precision. The precision in the timing of action potentials depends on the low input resistance (approximately 6 MOmega) of octopus cells at the res...

متن کامل

Octopus cells of the mammalian ventral cochlear nucleus sense the rate of depolarization.

Whole cell patch recordings in slices show that the probability of firing of action potentials in octopus cells of the ventral cochlear nucleus depends on the dynamic properties of depolarization. Octopus cells fired only when the rate of rise of a depolarization exceeded a threshold value that varied between 5 and 15 mV/ms among cells. The threshold rate of rise was independent of whether depo...

متن کامل

Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus.

The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory ...

متن کامل

Contributions of ion conductances to the onset responses of octopus cells in the ventral cochlear nucleus: simulation results.

The onset response pattern displayed by octopus cells has been attributed to intrinsic membrane properties, low membrane impedance, and/or synaptic inputs. Although the importance of a low membrane impedance generally is acknowledged as an essential component, views differ on the role that ion channels play in producing the onset response. In this study, we use a computer model to investigate t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 1999